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Abstract 

Interaction of bubbles with solid surfaces is considered with respect to 
approach/contact, film rupture, and bubble attachment, with particle separation by 
flotation the classic example. During approach/contact bubble deformation may occur 
and the interaction involves momentum transfer as described by hydrodynamic forces. 
Subsequent interaction involving film rupture is governed by interfacial forces including 
van der Waals forces, electrostatic forces, hydration forces, and hydrophobic forces. The 
structure and stability of the film is considered with respect to interfacial water structure 
and the presence of surface stabilized, nanosized gas bubbles. Featured properties of the 
solid surface (roughness, heterogeneity) have a significant influence on water film 
stability and rupture. Finally the bubble attachment is examined in terms of the three-
phase line of contact, its formation and relaxation.  
 
1. Introduction 

Interaction of gas bubbles with solid surfaces plays an important role in many areas 
of technology. Most significant is the role in particle separation by the flotation process. 
The essence of the separation is bubble attachment to the surface of hydrophobic 
particles, which leads to flotation due to the buoyancy of the particle/bubble aggregate. In 
this way separation is achieved from other particle types which are maintained in a 
hydrophilic state. 
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Figure 1. Sequence of events for bubble attachment at a hydrophobic surface 

 
By no means is interaction of bubbles with solid surfaces or particles a simple 

process. On the contrary, it is a complicated process, which can be divided into several 
steps governed by different forces. See Figure 1. These steps will describe the behavior of 
the bubble at various distances from the solid surface during the approach and ultimate 
displacement of the liquid phase. The bubble-solid interaction starts at a certain distance 
where bubble and particle approach each other in a gravitational field or another applied 
force field. During this approach hydrodynamic forces between the bubble and solid 
surface are of great importance. On closer approach, interfacial forces become most 
important, governing further stability of the liquid film between the gas-liquid and solid-



liquid interfaces. Depending on the type of solid surface and the solution chemistry of the 
liquid phase, these forces can be repulsive, thus stabilizing the liquid film between 
interfaces, or they can be attractive, resulting in destabilization of the liquid film. In the 
latter case, the liquid film becomes unstable and ruptures, leading to the formation of a 
three-phase contact (TPC) line and attachment of the bubble. After rupture, the three-
phase-contact line moves across the solid surface at a certain rate. This relaxation process 
initiated during rupture of the film leads to a stable or meta-stable state, governed by the 
thermodynamic properties of the gas-solid, liquid-solid, and gas-liquid interfaces as well 
as quality of the solid surface. 

 
2. Capillary and Hydrodynamic Interactions during Approach 

There is a number of reviews published on the hydrodynamic interaction during 
bubble-particle encounter [1-5]. The emphasis of this section is on the capillary and 
hydrodynamic interactions during bubble-particle contact.  

The bubble-solid approach can take place with different trajectories due to their 
respective directions of motion. If a particle approaches a bubble in a direction normal to 
the bubble surface, the momentum of the approach is high, causing strong deformation of 
the local gas-liquid interface (Figure 2). This bubble-particle interaction is called the 
collision contact. Another extreme case is the sliding contact when a bubble and a 
particle meet each other without any significant deformation of the local bubble surface. 
In this case the particle usually slides on the bubble surface after initial encounter. The 
hydrodynamic interactions during bubble-particle approach have been modeled based on 
these extreme cases [6-11]. 
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Figure 2. Illustration of the collision and sliding interactions 

 



Bubble deformation 
Since particles are usually much smaller than bubbles in flotation, the physical 

picture of bubble deformation has commonly been approximated to be the deformation of 
a planar interface by the approach of a solid sphere (Figure 3). As shown in this figure, 
the deformed interface is divided into two parts, namely, the inner and outer menisci ([6, 
8, 11]. The inner meniscus, where the intervening liquid film is formed, is spherical. The 
outer meniscus is non-spherical. These two parts of the meniscus profile are separated by 
the transition angle α as shown by point T in Figure 3. 
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Figure 3. Deformation of a gas-liquid interface by the particle approach 

 
The non-spherical meniscus is governed by the Young-Laplace equation, which is a 

second order partial differential equation and cannot be integrated in closed form for the 
general case of the bubble-particle interaction. It must usually be solved numerically. 
This is a relatively easy task for modern computers and replaces extensive tables of 
solutions available in the literature [12, 13], which are not convenient to use in the force 
analysis since an interpolation scheme is required. However, the numerical computation 
is still difficult to apply in the modeling exercises and a number of approximate solutions 
have been used to describe the shape of the non-spherical meniscus. These approximate 
solutions include Poisson equation for meniscus with small angular inclinations, 
Derjaguin equation for meniscus wrapping small particles, and empirical solutions. 

The Poisson [14] equation for the meniscus depression was used to describe the 
meniscus of the deformed bubble surface due to particle approach by Philippoff [15]. The 
Poisson solution to the Young-Laplace equation was derived based on the assumption of 
small angular inclinations of the deformed interface so that the non-linear Young-Laplace 
equation can be replaced by a linear differential equation. For the depression, h, of the 
non-spherical meniscus the Poisson solution as a function of the radial distance, r, 



measured from the axis of symmetry gives [12] 
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where K0 and K1 are the modified Bessel functions of the second kind, and of zero and 
first order, respectively. R is the radius of the spherical meniscus, which is equal to the 
particle radius plus the liquid film thickness (Figure 3). L is the capillary length defined 
by 
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where σ is the surface tension, δ is the liquid density and g is the acceleration due to 
gravity. For an air-water interface at 200C (δ = 1000 kg/m3; σ = 72.8 mN/m), L = 2.72 
mm. 

For the maximum depression, H, of the non-spherical meniscus substituting 
 into Eq. 1 and expanding the Bessel functions into a Maclaurin series gives sinr R α=
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where γ = 0.5772 and is the Euler constant. Eq.3 was first derived by Poisson [14]. 
Comparison to the exact numerical results shows that both Eq. 1 and Eq. 3 are accurate 
up to the maximum angle of meniscus inclination at about 60o. 

The Poisson equation was derived based on the assumption of the small radius 
 at contact, but it is additionally subjected to the limit of the small angular 

inclination of the meniscus. Better approximations can be obtained based on the method 
of matched asymptotic perturbation. In this perturbation, the meniscus is mathematically 
separated into two characteristic regions. The region far from the contact is characterized 
by the small angular inclination of the deformed interface, for which the Poisson solution 
can be applied. The second region is close to the contact with the wrapped particle having 
a small radius. This close region is characterized by the short radial coordinate, for which 
the Young-Laplace equation can be simplified to the differential equation of the catenary 
and can be solved. The solutions for these two regions can be linked by matching the 
profiles of the menisci, leading to the following expression for the maximum depression, 
H, of the non-spherical meniscus: 
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This equation was first derived by Derjaguin [16]. It can be observed that the 
Derjaguin equation reduces to the Poisson equation in the limit of small α. These 



approximations are significantly different if the wrapping meniscus has a neck. 
Comparison to the exact numerical results shows that the relative error of the Derjaguin 
equation is smaller than 5% over the whole range of α if . Eq. 4 was used 
to describe the meniscus of the deformed bubble surface due to the particle approach by 
Scheludko and Schulze et al. [6, 8]. 

sin / 0.2R Lα ≤

The approximate analytical solution to the Young-Laplace equation for the 
meniscus wrapping large contact radius “ ” can also be developed by successive 
approximation schemes, starting from the solution for the meniscus around a plate [17], 
resulting in the following prediction for the maximum meniscus depression: 
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This equation is accurate for all α, when compared with the exact numerical data, if 
. For the intermediate range of the contact radius  between 0.2 

and 2, the solution to the Young-Laplace equation for the maximum depression of the 
non-spherical meniscus can be obtained by the rational empirical approximation [18], 
leading to  
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where a and b are the empirical parameters obtained by fitting the exact numerical data to 
the Young-Laplace equation. The following equations were obtained: 
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Comparison between the numerical results and Eq. 6 is shown in Figure 4. As seen 
in this figure, these equations are accurate for α ≤ . This range is useful for 
modeling of bubble deformation due to particle approach, attachment and detachment 
during flotation. 
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Figure 4. Comparison of Eq. 6 (solid curves) to the exact numerical results (points) for 
the meniscus depression for  [19]. 2.0 sin / 0.2R Lα≥ ≥

Film thinning and hydrodynamic forces during collision 
The film thinning between a particle and a bubble is controlled by both equilibrium 

(intermolecular and surface) and dynamic forces. The dynamic aspects of film thinning 
can be examined using the continuum hydrodynamics, as commenced by Stefan and 
Reynolds [20], leading to the celebrated Stefan-Reynolds equation, Eq. 9, which links the 
hydrodynamic (resistance) force, F, and the rate, V, of film thinning by 
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where R and h are the film radius and thickness, and µ is the liquid viscosity. The Stefan-
Reynolds equation was derived for liquid films at parallel plane surfaces, for which both 
V and h do not vary along the film. The Stefan-Reynolds equation was validated for free 
(foam) films between two bubbles, as well as wetting films between a flat solid substrate 
and a gas bubble by Scheludko and others [21-23]. This equation can be used, as a first 
approximation, to calculate the time of thinning of the local intervening water film during 
the bubble-particle collision interaction [24]. During interaction the hydrodynamic 
resistance is counterbalanced by the disjoining pressure, , of intermolecular and 
surface forces, the Laplace (capillary) pressure, P

Π
σ, and other external (gravitational and 

applied) forces. Neglecting the external forces, Eq. 9 gives 
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This equation can be numerically integrated for the dependence of film thickness 
on time, given that the disjoining pressure as a function of film thickness is known. An 
example is shown in Figure 5. 

Both Eq. 9 and Eq. 10 are applied to no-slip bubble surfaces. If the slip bubble 
surface is considered, the boundary conditions for the zero liquid velocities at the 
interface are replaced by zero interfacial stresses. In this case, the numerical constant 2/3 
on the right hand side of Eq. 10 is replaced by 8/3. 

 

 
Figure 5. The Stefan-Reynolds equation (lines) and experimental (points) [25] thickness 
of stable planar 0.001 M KCl films between an air bubble and a hydrophilic glass 
surfaces versus time. The double-layer interaction are predicted using the Hogg-Healy-
Fuerstenau equation [26] for the constant surface potential (potential-potential) 
conditions. The double-layer interactions under the other two conditions are described in 
the literature [27] 

 
The effect of the curvature of the deformed (“spherical”) meniscus on the film 

thinning and the hydrodynamic force can also be studied using the lubrication 
approximation of the Navier-Stokes equations in conjunction with the continuity equation 
[28]. The final result for the hydrodynamic resistance as a function of the thinning rate, V, 
the particle radius, , and the radius, R, of the deformed spherical meniscus at the apex 
(Figure 3) can be described by the following Taylor-like equation:   
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where the effective radius, , of interaction is described by the following equation: effR
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This equation shows that the effective radius and the hydrodynamic resistance 
approach infinity if the radius of curvature of the deformed spherical meniscus at the 
apex approaches the particle radius. An extremely strong repulsive surface force (due to 
hydration, double-layer or steric interactions) is required to counterbalance the 
hydrodynamic resistance and capillary forces. Otherwise, the deformed spherical 
meniscus will be ruptured if the maximum of the positive disjoining pressure is attained. 
 

Film thinning and hydrodynamic forces during sliding 
The liquid films described in the previous sections are rotationally symmetric. 

During particle sliding, the liquid flow streamlines in the intervening films are no longer 
symmetric about the bubble-particle centerline. Modeling of the thinning of the 
asymmetric films during the sliding interaction usually requires a two-dimensional 
solution of the (Navier-) Stokes equation or its simplified lubrication approximation [29]. 
The lubrication approximation is usually poor and either high-order approximations or 
matching with the numerical results are often required for obtaining the correction terms. 
The numerical results for the corrected drag forces for sliding interaction are shown 
below. 

The drag force on a small particle far from the bubble surface is well described by 
the Stokes law: F  where V and W are the vectors of the particle and 
fluid velocities, respectively. When the particle approaches a surface with an intervening 
liquid film, the results obtained, are described by the Stefan-Reynolds Eq. 9 and the 
Taylor-like Eq. 11 show that hydrodynamic resistance increases rapidly. This deviation 
of the hydrodynamic resistance is due to short-range hydrodynamic interactions and can 
be accounted for using the hydrodynamic resistance functions. The Stokes drag force is 
modified to give: 
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In the (radial) direction of the bubble-particle centerline 

16 6r rF aV f aW fπµ πµ= − +  Eq. 13 

In the (tangential) direction perpendicular to the centerline 

36 6F aV f aWϕ ϕπµ πµ= − +  Eq. 14 

where the subscript ‘r’ and ‘ϕ’ describe the radial and tangential components of the drag 
force and the particle and fluid velocities, and functions  (i = 1 to 4) describe the 
hydrodynamic resistance functions. 

if

When the surfaces are far apart (h → ∞), Eq. 13 and Eq. 14 reduce to the standard 
Stokes drag force equations, giving 

( ) 1   for 1, 2, 3 and 4if h i→ ∞ = =  Eq. 15 

When h → 0, the lubrication theory described by the Taylor-like Eq. 11 applied to 
sliding interaction with  gives bR R R− = �



( )1
/

0 pR h
f h

m
→ =  Eq. 16 

where m = 1 and 4 for immobile (rigid) and mobile bubbles, respectively. 
The resistance functions between the two limits can be derived from the Stokes 

equations. The exact equations include: 
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For mobile gas-liquid interfaces 
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In these equations, α is a function of the shortest separation distance, h, between 
the surfaces, and is described by 
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Eq. 17 and Eq. 19 can be found in [30] while Eqs. 18 and 20-22 are recently 
developed in [18]. 

For the bubble-particle interaction modeling exercises, the resistance functions 
described by Eq. 17 and Eq. 22 can be replaced by simple approximate equations [27] 
described in Table 1. The approximate equations are weighted so that they asymptotically 



reduce to the correct limits at  and at h . h → ∞ 0→
 

Table 1. Approximate equations for hydrodynamic resistance functions in the radial 
direction 

No-slip gas-liquid interface Slip gas-liquid interface 
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The hydrodynamic resistance functions in the tangential direction parallel to the 

bubble surface cannot be described by closed-form expressions like Eqs. 17-22 and are 
determined numerically [29, 31]. The calculation is also complicated by the fact that a 
particle in shear flow in the tangential direction is subjected to both the translational and 
rotational motions. The translation also generates a torque about the particle center and 
the rotation creates an additional drag force. For sliding particles the combined torque 
must be balanced by the particle internal reaction and the angular velocity can be 
determined. The numerical results for the resistance function for f3 are shown in Figure 6. 
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Figure 6. Hydrodynamic resistance function for immobile [29] and mobile gas-liquid 
interfaces 

 
The prediction for f4 depends on the liquid shear flow in the direction tangential to 

the bubble surface, which may have a number of terms representing the uniform, linear or 
parabolic shear flows [32]. The uniform shear flow only exists at the mobile bubble 



surface, where the tangential liquid velocity is non-zero. The final results for f4 can be 
described by  
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where W0,  and W  are the uniform, linear and parabolic terms of the shear flow 
velocity, i.e., W W . The numerical results for the resistance functions f

1W 2

= +0 1W Wϕ + 2 40 (for 
mobile bubbles only), f41 and f42 are shown in Figure 7.  
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Figure 7. Hydrodynamic resistance functions  (line without symbols),  (○ and ●) 
and  (◊ and ♦) for immobile [32] and mobile interfaces 
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Table 2. Approximate equations for hydrodynamic resistance functions in the tangential 
direction 

No-slip gas-liquid interface Slip gas-liquid interface 
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For the modeling of the bubble-particle interaction the numerical results shown in 



Figure 6 and Figure 7 can be conveniently described by the rational approximate 
equations, which are given in Table 2. These approximate equations are weighted so that 
they asymptotically reduce to unity in the limit of  and h . h → ∞ 0→

 
3. Interfacial Forces 

When a bubble approaches a solid surface, interfacial forces become significant at 
separation distances of about one micrometer. These forces arise from molecular 
interactions between charged and uncharged atoms or molecules of the interacting bodies 
and the surrounding medium. The forces between bodies can then be derived from the 
interactions between atoms or molecules and described by the force of interaction or by 
the energy of interaction. The energy of interaction has been used more frequently in 
earlier studies due to the scalar character and the possibility of comparison with the 
kinetic energy of molecules. However, now using direct measurement techniques, the 
force of interaction is determined, so in more recent works the force of interaction has 
mainly been used to describe the interactions for a particular system. One can transform 
forces values to energy, and vice versa using the Derjaguin approximation [33]. The net 
force between interfaces can be treated as a sum of several components acting together. 
The most successful approach to the problem of net interactions between two interfaces 
was proposed by Derjaguin, Landau, Verwey and Overbeek and is known as the DLVO 
theory [34, 35]. This theory treats the total interaction force between two surfaces in a 
liquid medium as an arithmetic sum of two components; van der Waals and electrostatic 
(electrical double layer) forces.  

The DLVO theory has been experimentally proven by many researchers and has 
been found useful for explaining colloidal stability and particle behavior in aqueous 
solutions [36, 37]. Of course, for asymmetric systems, like the bubble and solid surface in 
flotation the situation is more complicated. In a great number of systems which involve a 
hydrophilic surface, the most important forces acting between the bubble and solid 
surfaces are van der Waals, and electrostatic (or electrical double layer) forces. In other 
cases, especially in the case of hydrophobic surfaces additional forces have to be 
considered, which are related to the perturbation of the water layer adjacent to the 
surfaces. Overlapping of the perturbed water molecules requires work to be done by or on 
the system, which leads to additional contributions to the DLVO forces. These solvent-
structure mediated non-DLVO forces can be (repulsive) hydration forces for hydrophilic 
surfaces or (attractive) hydrophobic forces for hydrophobic surfaces. These forces are 
usually called structural forces by Derjaguin and his Russian school of surface forces [38, 
39]. At short separation distances these structural forces can become oscillatory due to 
the entropic effects of the configurational rearrangement of solvent molecules between 
hydrophilic surfaces under an applied force. 

 

Van der Waals Forces 
Two uncharged surfaces always interact at small separation distances due to the van 

der Waals force. This interaction is due to the result of dipole-dipole interaction 
(Keesom), dipole-induced dipole interaction (Debye) or instantaneous dipole-dipole 
correlation (London). The forces of all three interactions between molecules decay with 
the seventh power of the intermolecular distance. At larger distances (h > 10 nm), the 



universal dispersion force decays ten times faster, due to an effect referred to as 
(electromagnetic) retardation. The last force (dispersive force) is always present, 
regardless of the interacting materials and for non-polar substances it is the most 
important part of the van der Waals interactions [40].  

The van der Waals interaction energy can be calculated using the Hamaker 
approach and/or the Lifshitz approach. In the first, also referred to as the microscopic 
approach, the interaction force between two macroscopic bodies is calculated by a 
pairwise summation of all the relevant microscopic interactions, which are assumed to be 
non-retarded and additive. The Lifshitz approach treats each interacting material as a 
continuum with certain macroscopic electrodynamic properties of the interacting 
materials such as dielectric constants and refractive index. It is therefore often referred to 
as the continuum or macroscopic approach. 

In the Hamaker approach energies for the interactions of all the atoms in one body 
with all the atoms in the other body is summed (integrated), leading to an integral 
expression for the interaction energy between the two macroscopic bodies, E, by 

6
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In Eq. 25, C is the coefficient of the appropriate interaction between elementary 
particles separated by distance r and dvi (i = 1, 2) the volume elements of bodies 1 and 2 
at distance r with volumes Vi, and with densities of atoms or molecules of ρi. The 
problem appears simple since it only requires the calculation of a closed integral. 
However, the results in closed analytical forms are available only for some simple 
systems. 

For bubble-particle and particle-particle interaction, the sphere-sphere interaction is 
of particular importance and can be expressed as follows: 
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where R1 and R2 are the radii of two spheres and r the inter-center separation. The term A 
is termed the Hamaker constant. This formula for interaction energy is also particularly 
useful since, when used with the effective Hamaker constant calculated by the continuum 
theory, it predicts approximately the same energy versus separation distance between two 
spheres as the continuum theory does [41]. 

The Hamaker constant, A, accepts values in the range of 10-21-10-18 J and is specific 
for a given system, although it may also be calculated from the Hamaker constants for 
each component, based on combining relations. For a symmetric system, the Hamaker 
constant A131 (two materials 1 interacting across a medium 3) is always positive and the 
van der Waals force is attractive. For an asymmetric system, it may happen that A132 
(matrial 1 and material 2 interacting across a medium 3) is negative under which 
condition the van der Waals force is repulsive. This is the case for bubble-particle 
interactions during flotation. The medium effect on the van der Waals force is analogous 



to the buoyancy of a body in a gravitational field [40]. 
The assumption of simple pairwise additivity during calculation of the Hamaker 

constant ignores the influence of neigbouring atoms on the interactions between pairs of 
interacting atoms. Also, the effect of the medium is not taken into account. Atoms at one 
surface also polarize atoms of the medium and such instantaneous dipoles induce dipoles 
at another surface. These problems are avoided in the Lifshitz theory [42], where the 
interaction is calculated from the bulk properties of materials including dielectric 
constant and refractive index.  

The Lifshitz  theory yields the van der Waals interaction energy E132 (per unit area) 
between two half-spaces 1, 2 immersed in a medium 3 as a function of the separation h as 
follows: [43] 

132 13 23 13 232
0

( ) ' ln[(1 )(1 )] d
8

xB

n xn

k TE h x y y e z z e x
hπ

∞∞
− −

=

= − −∑ ∫ x  Eq. 27 

3
3

3

a a
a

a a

x sy
x s
ε ε
ε ε

−
=

+
    3

a
a

a

x sz
x s

−
=

+
    ξ π     2 /n Bn k T= h 32 /n nx hξ ε= c  

{ }2 2 2
3/ 1a n as x x ε ε= + −     ε ε  ( )a a niξ=

In these equations, the subscript a = 1 to 3, i = √-1, c is the speed of light, kB is 
Boltzman’s constant, T is the absolute temperature,  is Planck’s constant divided by 2π 
and iξ

h

n are the discrete equally spaced imaginary frequencies. The prime on the 
summation symbol indicates that the zero-frequency (n = 0) term, which accounts for the 
contributions due to the orientation and induction interactions, is divided by 2. Eq. 27 is 
somewhat complicated but it shows that the interaction energy depends on 
electromagnetic fluctuations, via the relative permittivity., ε(iξn), of all three materials. 

At short separations Eq. 27 simplifies to 

1 3 2 3
132 2

1 3 2 30
( 0) ' ln 1 d

8
xB

xnn

k TE h x e
h

ε ε ε ε
ε ε ε επ

∞ ∞ −

=

 − −
→ = −

+ + 
∑ ∫ x


  Eq. 28 

The Hamaker constants can now be determined using the static dielectric constant 
and refractive index, which are easily measurable and reported in the literature for most 
minerals [44]. 
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Figure 8. Van der Waals energy determined by Eq. 27 for quartz-water-air and quartz-
water-quartz systems at 20oC 

 
It has to be noted that the electromagnetic retardation manifests itself at a 

separation of about 3 nm. One of the best ways to involve the retardation effect is to 
express the Hamaker constant as function of the separation distance. 

132 13 23 13 23
0

3( ) ' ln[(1 )(1 )] d
2

x

n xn

kTA h x y y e z z e x
∞∞

− −

=

= − − −∑ ∫ x

hκ

h

 Eq. 29 

This equation reflects the dependence of the “Hamaker constant” on the separation 
h, as a result of electromagnetic retardation, and is referred to as the Hamaker function or 
the effective Hamaker constant, A132(h). One can split the expression for A132(h) into two 
parts, namely, the zero-frequency part and the nonzero-frequency (dispersion) part, as 
follows: 

0
132 132 132( ) ( )A h A A hξ= +  Eq. 30 

It should be noted that the zero-frequency contribution, , to the Hamaker 
constant and the Hamaker function is essentially an electrostatic interaction and will be 
screened if the interacting medium is an electrolyte. This results in a decrease of  by 
a factor of (1 [43], where κ is the reciprocal Debye length. The screened, 
retarded Hamaker function is determined by 
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For the modeling of bubble-particle interaction in flotation the static dielectric 
constants of minerals are not always available. Fortunately, the zero-frequency term 



involving the dielectric constant is screened by electrolytes and may be ignored. The 
refractive index of minerals available from mineralogical studies is sufficient for the 
determination of the Hamaker function in the analysis of flotation systems. 

Electrostatic (Electrical Double Layer) Forces 
In a polar solvent, like water, most surfaces, including air bubbles and solids, 

become electrically charged. The charge can arise from preferencial hydration of lattice 
ions, dissociation of ionizable groups present such as OH groups at oxide surfaces, or by 
adsorption/reaction of ions at a surface. The degree of ionization depends on the 
chemistry of the surface and may be different for different materials and solution 
conditions (pH, temperature). 

Ions with charge opposite to that on the surface (counterions) are attracted, while 
ions with the same charge (co-ions) are repelled from the surface. As a result, the 
concentration of ions next to the surface is different from that in the bulk. This layer of 
ions is referred to as the diffuse layer, which together with the layer of adsorbed ions, 
composes the so-called electrical double layer (EDL), see Figure 9. 

 

 

Figure 9. Electrical double-layer (EDL) around a particle 



The important parameter which measures the thickness of double layer, is called 
the Debye constant, κ, and is mathematically described by  
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where e is the charge on electron, ni(∞) is the number per unit volume of the electrolyte 
ions of type i with valence zi in the bulk solution far from the surface, kB is Boltzmann’s 
constant, T is the absolute temperature (in Kelvin), ε  is the permittivity of vacuum, and 
ε is the relative permittivity (the dielectric constant) of the solution (ε = 80 for ordinary 
water). The summation is over all the electrolyte ions in solution. For water at 25

0

oC, one 
has κ = 3.288√I where κ is measured in nm-1 while both the ion concentration ci and the 
ionic strength I are measured in mol/L. Typical values of 1/κ range from a fraction of a 
nanometer to about 200 nm.  

When two similarly charged surfaces approach each other the overlap of the EDLs 
produces a repulsive force. When surfaces are oppositely charged, overlapping of the 
EDLs produces attraction. The force between two surfaces can be calculated from the 
non-linear Poisson-Boltzman equation describing the electrostatic potential around a 
surface in an ionic solution.  
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This equation (where ψ is a surface potential) is the basis of the Gouy-Chapman 
theory of the electrical double layer, which assumes that the solvent is a structureless 
continuum, the ions are point charges, and the potential of the mean force and the average 
electrostatic potential are the same. A substantial amount of theoretical work has been 
done to identify the limitations of these assumptions. However, experiments [45] have 
shown that the Poisson-Boltzmann equation works surprisingly well down to separations 
of a few nanometers. 

The force of the electrical double-layer interaction also depends on the charging 
mechanisms occurring at the surfaces during the interaction. The following three cases 
are usually considered; the surface potential remains constant, the surface charge remains 
constant, and the surface charge and potential change by a charge regulation. 

This particular aspect of charge regulation is not well established in flotation. If a 
particle slides over the bubble surface, the location of the particle-bubble interaction 
changes continuously. In this case, a perfect regulation of surface charge is difficult to 
establish and the interaction at constant surface charge is more appropriate than the 
interaction at constant surface potential. A perfect regulation of charge may take place if 
the location of the bubble-particle interaction does not change over the bubble surface. 
Thus, the constant surface potential interaction probably occurs during the bubble-
particle collision interaction.  

The electrical double-layer interaction between surfaces is best solved by numerical 
methods because of the non-linearity of the Poisson-Boltzmann equation. The linear 



(Debye-Hückel) approximation is used for weakly charged surfaces, i.e. when the 
reduced potential is significantly small. The Derjaguin approximation is applicable for 
separations smaller than the radius of the spheres. The superposition approximation is 
used when the surfaces are far apart, i.e., when the scaled separation is significantly 
greater than one. These approximations are often used in a number of combinations. The 
linear Debye-Hückel approximation has a wide range of applicability and is convenient 
for modeling bubble-particle interactions.  

The disjoining pressure between two flat electrical double layers at a distance h is 
equal to the sum of a repulsive osmotic term and an attractive electrical stress 
contribution. In the framework of the linearized Debye-Hückel approximation the 
disjoining pressure can be expressed as: 
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Integrating the disjoining pressure from h to infinity gives the interaction energy 
(per unit area) between the plates, which can be inserted into the Derjaguin 
approximation to obtain the force and energy of the double-layer interaction between a 
bubble and a solid particle, leading to 
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In these equations, y is a new integration variable. When inserting, for instance, Eq. 
34 into Eq. 35, h is replaced by y. Note that the integrals cannot be evaluated at this stage 
because the integration constants c1 and c2 are functions of the separation distance 
between the plates. This function is obtained using the surface charging mechanisms. 

At constant surface potentials the equations for the integration constants, the 
disjoining pressure, and the force and energy between a bubble and a particle are 
described by 
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During the interaction at constant surface potentials, two surfaces having potentials 
of unlike sign (ψ1ψ2 < 0) are attracted to each other at all separation distances as 
expected. If the surfaces have potentials of like sign but of unequal magnitude, the 
interaction is repulsive at large separations but attractive at small separations. In the case 
of like sign potentials of equal magnitude, the surfaces are repelled at all separations. 

The condition of the interaction may be such that, instead of potentials, charge per 
unit area on the surfaces (charge densities) σ1 and σ2 remains constant. The integration 
constants yield 
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The charge densities for the constant charge interaction can be calculated using the 
potentials of the (isolated) plates before the interaction, ψi∞ (i = 1, 2), as follows: 
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Which gives: 
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The surface potential versus h, yields 

coth( ) cosech( )i i jhψ ψ κ ψ κ∞ ∞= +  Eq. 44 

The double-layer interaction between surfaces at constant charges of like sign is 
monotonically repulsive at all separation distances. The interaction between surfaces with 
opposite signs of charge is attractive at large separations and turns to repulsion at small 
separations.  
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Figure 10. Isotherms of disjoining pressure (divided by ) between plates with 
different charging mechanisms 
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As is shown on Figure 10 , the double-layer interactions are different for systems, 

which have the same initial potential but differ in the charging mechanism of the 
surfaces. In practice, neither the constant surface potential nor constant surface charge 
assumption is likely to be correct, mainly because of the presence of Stern layers and the 
uncertainty over which potential is relevant to the bubble-particle interaction. 
Nevertheless, the two cases of both surfaces at constant charge or constant potential may 
be regarded as extremes. All possible isotherms fall within a “fork” formed by the curves 
calculated for both surfaces at constant potential and at constant charge (Figure 10). 
Repulsion is minimal in the first case, and maximal in the second case. 

The surface potential is required in the calculation of the double-layer interaction 
and is often substituted by the zeta potential, ζ, which is the potential measured at the 
slipping plane by electrokinetic methods, such as electrophoresis, electroosmosis, or 
streaming potential. In flotation, the zeta potentials of fine minerals are mainly measured 
by electrophoretic methods. A comprehensive collection of the electrokinetic potential of 
minerals was prepared by Ney [46].  

Measuring the ζ-potentials of gas bubbles is more difficult than those of solid 
particles. Conventional microelectrophoretic cells have been used to measure the ζ-
potentials of microbubbles [47-51]. Taggart [52] and Saulnier et al. [53].used a spinning 
horizontal cylinder to capture a bubble along the axis of its rapid rotation and measure the 
bubble mobility as a function of the applied voltage. The streaming current technique also 
has been used to determine the sign and magnitude of bubble charge relevant for flotation 
systems [54]. 

In general, gas bubbles are negatively charged in pure water and solutions of 
inorganic electrolytes such as NaCl and KCl (Figure 11). It can be seen that gas bubbles 
are negatively charged at pH > 2 − 3. The isoelectric point would be somewhere between 
pH=1.5 and 2.5. The negative ζ-potential of bubbles at pH > 3 in water indicates that OH- 
ions preferentially adsorb at the clean gas-water interface. 
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Figure 11. Zeta potential of air bubbles versus pH in water and in indifferent inorganic 
salt (NaCl and KCl ) solutions (From [47, 55-57].) 

 
The negative charge of gas bubbles in inorganic salt solutions can be reduced or 

even reversed by the addition of multivalent inorganic salts (Figure 12). This is attributed 
to the precipitation of hydroxides of multivalent cations at the gas-water interface in the 
alkaline pH region and the specific adsorption of the multivalent cations in the acidic pH 
range. 
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Figure 12. Effect of multivalent inorganic salts on the zeta potential of microbubbles in 
NaCl background solutions (From [47-49].) 

 
In the presence of surfactants, the ζ-potential of gas bubbles is determined by the 

kinetics and the adsorption/desorption/dissociation of surfactant molecules at the bubble 
surface. In the solution of a strongly dissociable surfactant, the ζ-potential of gas bubbles 



is determined by the type of surfactant, being negative in the presence of an anionic 
surfactant and positive in the presence of a cationic surfactant (Figure 13). In the 
presence of a weak electrolyte surfactant, the ζ-potential may be, depending on pH, either 
negative or positive (Figure 14). 
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Figure 13. Zeta potential of microbubbles in solutions of strong electrolyte surfactants. 
SDS = sodium dodecylsulfate; CPC = cetylpyridinium chloride (From [50, 57].) 
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Figure 14. Zeta potential of microbubbles in solutions of weak electrolyte surfactants. 
DAH = dodecylamine hydrochloride (From [50, 51].) 

 
Detailed knowledge of the effect of bubble size on the bubble ζ-potential is not 

available yet, probably because of limitations of the available measuring techniques. The 
zeta potential of microbubbles measured with electrophoretic techniques is assumed 
independent of the bubble size. However, the experimental data of Usui [58] shows that 



the zeta potential of bubbles measured using the Dorn effect technique increases with the 
bubble size, though hydrodynamic considerations complicate the interpretation of this 
result. Similar results were also reported by McShea and Callaghan [56] who used the 
spinning cylinder electrophoretic technique to measure the zeta potential. This may 
indicate that the ζ-potential of air bubble depends on the physicochemical hydrodynamics 
of the gas-liquid interface. 

Hydration Forces 
Hydration forces have been extensively studied between clay, mica and silica 

surfaces [36, 59, 60]. These surfaces swell spontaneously or repel each other in aqueous 
solutions even of very high salt concentration. In these systems, the surfaces and particles 
remain in strong adhesion or coagulate in a primary minimum only if the forces were the 
DLVO forces. 

One [61] of the first attempts to predict the hydration forces is based on the 
expansion of the free energy density introduced by Landau in the theory of phase 
transitions [62]. The order parameter is defined in such a way that it is zero in a 
disordered (isotropic) bulk phase and nonzero (positive or negative) in the intervening 
liquid film. The order parameter is obtained by retaining only the first two terms in the 
expansion of free energy density. For the disjoining pressure, the final solution gives  

( ) ( ) ( )/  exp /hydration h K hΠ λ= − λ  Eq. 45 

where h is the separation distance, λ is the decay length and K is a constant. The force 
between two spheres is then described by 
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The order parameter is the polarization of the dielectric induced by the electric field 
produced by monolayers of adsorbed dipole molecules oriented perpendicular to the 
surface [63]. The interpretation of the order parameter as the state of polarization of water 
layers can be further elaborated considering the dependence of polarization in the surface 
layer of water molecules on film thickness [64]. The interaction force is a complicated 
function of h at a small thickness. At large thicknesses the hydration force can again be 
approximated by a single exponential function described by Eq. 46. 

The phenomenological theory on structural repulsion described by Eq. 46 is 
confirmed by experimental data, which leads to the conclusion that the hydration force 
decays exponentially [36, 65]. In some situations, in place of a single exponential, a 
double exponential function describes the experimental data better [60]. A summary of 
values for the hydration force constants and decay lengths reported by various authors is 
given in Table 3. As can be seen from this table, for mineral systems the force constant, 
K, has values generally in the range 10-2 – 10-3 N/m with decay lengths of the order of 1 
nm when expressed in single exponential form. Hydrophilic biological systems display a 
higher force constant over a shorter range. 

 



Table 3. Experimentally determined values of the hydration force constant K and decay 
length λ for symmetric systems 

System K (N/m) λ (nm) Reference 
Mica in 10-4 – 10-2 M KNO3 10-2  1.0 [66] 
Mica in 5 × 10-4 M NaCl 1.4 × 10-2  0.9 [36] 
Mica in 5 × 10-3 M NaCl 2.7 × 10-3  0.9 [36] 
Quartz in 10-3 M KCl 8 × 10-4  1.0 [39] 
Quartz in 10-4 M KCl 10-3  1.0 [39] 
Glass in 10-4 M KCl 1.3 × 10-3  0.85 [39] 
Montmorillonite in 10-4 M 
NaCl  

4.4 × 10-3  2.2 [39] 

Egg lecithin 1.8 × 10-1  0.25 [67] 
Lecithin 1.4 × 10  0.193 [67] 

 
A series of experiments with molecularly smooth mica surfaces [36, 60] to identify 

the factors that regulate hydration forces showed that the hydrated cations bind with the 
negatively charged surfaces and give rise to a repulsive hydration force. This is due to the 
energy needed to dehydrate the bound cations, which presumably retain some of their 
water of hydration on binding. The strength and range of the hydration forces increase 
with the adsorption and degree of hydration of the adsorbing cations, following the anti-
lyotropic or anti-Hofmeister series: La3+ > Mg2+ > Ca2+ > Li+ ~ Na+ > K+ > Cs+ [60], 
which reflects the size and polarizability of ions as well as their mobility. Thus at 
saturation adsorption the weakest forces can be found with Cs+ as the adsorbing ion, the 
strongest with La3+. Similar trends are observed with other negatively charged colloidal 
surfaces. 

The hydration force between two mica surfaces is monotonically repulsive below 
about 5 nm. Below a separation distance of about 1.5 nm an oscillation with a mean 
periodicity of about 0.25 nm is observed, roughly equal to the diameter of the water 
molecule [60]. 

Since hydration forces can be modified and regulated by exchanging ions of 
different hydration states at surfaces, the influence of electrolytes on the stability of 
colloidal dispersions and interactions becomes complicated. In many cases, particles can 
be coagulated and flocculated by increasing the electrolyte concentration – an effect that 
was traditionally attributed to the reduced screening of the electrostatic double-layer 
repulsion between the particles due to the reduced Debye length. However, an increase in 
the electrolyte concentration may lead to the increased hydration repulsion experienced 
by certain surfaces when they bind highly hydrated ions at higher salt concentrations. 
This hydration regulation of adhesion and interparticle forces is an important practical 
method for controlling various processes such as clay swelling, ceramic processing and 
rheology, and colloidal particle and bubble adhesion and coalescence.  

“Hydrophobic” Forces - Theory 
The wetting behavior of hydrophobic solids with contact angles above zero, 

coagulation studies, and flotation experiments gave an early indication of the existence of 
a non-DLVO attractive surface force. This interaction force has been directly measured 



as will be discussed later. It can be concluded from previous sections that classical 
theories of surface forces such as EDL or van der Waals forces cannot predict the origin 
of the attractive force between a solid surface and a bubble. An additional attractive 
surface force that can disrupt the water film and lead to the attachment of two 
hydrophobic particles and/or hydrophobic particle and a gas bubble has to be invoked.  

Hydrophobic surfaces are inert to water in the sense that they are unable to interact 
or bind with water via hydrogen bonds. Hydrophobic forces between macroscopic 
hydrophobic surfaces have generally been found to increase with the hydrophobicity of 
surfaces, as conventionally defined by the contact angle of water at these surfaces. 
Further, the hydrophobic interaction has been found to be far stronger than the van der 
Waals attraction between surfaces (extending to distances of at least 10 to 100 nm), and 
cannot be simply a negative form of the monotonically repulsive hydration force between 
hydrophilic surfaces. 

At present there has been no consensus on the explanation of the hydrophobic 
attractive forces despite a number of proposed mechanisms, which include: 

 

• Entropic origin, arising from configurational rearrangement of the (vicinal) water 
molecules at the hydrophobic surfaces [68-70], 

• Separation–induced phase transition (cavitation) [65, 71-73], 
• Hydrodynamic fluctuating correlation [74],  
• Charge-fluctuation correlation [75],  
• Electrostatic origin [76, 77], 
• Anomalous polarization of vicinal water molecules [78], and  
• Bridging submicron bubbles [79, 80]. 

The prediction of hydrophobic attractive forces remains a formidable challenge to 
theoreticians and at present only empirical equations has been used to fit experimental 
data.  

For many short-range hydrophobic attractive forces, data can best be fitted by a 
single exponential function, 

( exp /hydrophobicF
K h

R
λ= − )  Eq. 47 

where the decay length λ is about 1 nm and K is negative. 
As it will be shown later, longer range hydrophobic forces have been also 

measured. The key feature of these measurements was that a single exponential decay 
law did not fit the experimental data and a double exponential function of two decay 
lengths 

( ) ( exp /  exp /hydrophobicF
K h K h

R
λ ∗= − + − )λ∗  Eq. 48 

was found to give the best fit to the experimental data. The first term is called the short-
range hydrophobic attraction with a decay length of 1.2 nm and the second is referred to 
as the long-range hydrophobic attraction 

Alternatively, the measured hydrophobic force can be described by a power law 



[69, 81], 

2
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which has the same form as the expression for the van der Waal forces. Experimental 
data shows [81] that the force constant in Eq. 49 for the hydrophobic interaction between 
macroscopic surfaces 1 and 2 in a medium 3 can be predicted using the geometric mean, 
and is a function of the contact angles, θ  and θ , of the surfaces, 1 2

1 2
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where the empirical constants a and b can be obtained from a best fit of the experimental 
data. If the force constant is expressed in joules, the best fit gives a = −7.0 and b = −18.0 
[81].  

One of the recent approaches to further describe the hydrophobic interactions 
between a particle and a bubble is based on the Lifshitz-van der Waals Lewis acid-base 
interaction theory developed by van Oss, Good and Chaudhury [82-84]. This theory and 
controversy around it are reviewed and discussed by Della Volpe and Siboni [85], and 
will not be repeated here. 

According to van Oss et al. [82-84], the total free energy of interaction between two 
flat and parallel surfaces or interfaces, e.g., gas-water and solid-water, can be divided into 
three components: 
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where ∆GSLG
LW , ∆GSLG

EL and ∆GSLG
AB are the Lifshitz-van der Waals, electrostatic, and 

Lewis acid-base components, respectively, of the free energy of interaction between a 
solid (S) and a gas (G) through a liquid (L) expressed as a function of distance (l) 
between interacting surfaces.  

Lifshitz-van der Waals forces are caused by interactions between dipoles and 
induced dipoles. The electrostatic interaction is due to the electrical surface charge that is 
present on almost all interfaces surrounded by a polar liquid. Both ∆GSLG

LW and ∆GSLG
EL 

components come together in the classical DLVO model reviewed in previous sections. 
Discussion in this section is limited to the Lewis acid-base interactions that according to 
van Oss et al. [83, 84] are responsible for the “hydrophobic effects” observed between 
interacting hydrophobic surfaces; those known as being only partially wetted by water. 
Attraction between hydrophobic surfaces in a polar liquid arises from the fact that the 
liquid-liquid interactions are much more favorable than liquid-hydrophobic surface 
interactions.  

The ∆GSLG
AB value of interaction between flat and parallel solid-liquid and liquid-

gas interfaces as a function of distance is defined according to van Oss et al. as: 
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where l0 is the distance between surfaces at contact, l0=0.157±0.009 nm; λ is the 
correlation length for the liquid medium, λ= 0.6 nm to 1 nm for water; γ is the 
surface/interfacial free energy component of the condensed phase; subscripts S and L 
refer to solid and liquid surfaces; and superscripts – and + refer to the electron donor 
(Lewis base) parameter and electron acceptor (Lewis acid) parameter of a 
surface/interface. 

The (+ and (- components of surface free energy, together with the Lifshitz-van der 
Waals component (LW, were determined for a number of liquids and solids based on 
contact angle measurements and several examples are shown in Tables 4 and 5. 

 

Table 4. Surface tension (surface free energy) components for selected liquids [83]   

Liquid 
γL 

[mJ/m2] 
γL

LW 
[mJ/m2] 

γL
- 

[mJ/m2] 
γL

+ 
[mJ/m2] 

Benzene 
Diiodomethane 
Dodecane 
Ethanol 
Ethyl acetate 
Ethylene glycol 
Formamide 
Glycerol 
Heptane 
Methanol 
N-Octanol 
Water 

28.85 
50.8 
25.35 
22.4 
25.2 
48 
58 
64 
20.14 
22.5 
27.5 
72.8 

28.85 
50.8 
25.35 
18.8 
25.2 
29.0 
39 
34 
20.14 
18.2 
27.5 
21.8 

2.7 
~0 
0 
~68 
13.1 
47.0 
39.6 
57.4 
0 
~77 
18.0 
25.5* 

0 
0 
0 
~0.02 
0 
1.9 
2.28 
3.92 
0 
~0.06 
0 
25.5* 

 
 
 
 
 
 
 
 
 
 
 



Table 5. Surface free energy components for selected solids [83, 84] 

Solid 
γS 

[mJ/m2] 
γS

LW 
[mJ/m2] 

γS
- 

[mJ/m2] 
γS

+ 
[mJ/m2] 

Alumina 
Apatite 
Calcite 
Dolomite 
Hematite 
Rutile 
Lactose 
Maltose 
Polyethylene 
Polyisobutylene 
Polymethyl methacrylate 
Polystyrene 
Polyvinyl alcohol 
Polyvinyl chloride 

39.7 
35.4 
57 
42.5 
53.4 
47.1 
41.1 
44.9 
33 
25 
40 
42 
42 
43.8 

31.6 
35.4 
40.2 
37.6 
45.6 
40.8 
41.1 
41.3 
33 
25 
40 
42 
42 
43 

27.2 
20.5 
54.4 
30.5 
50.4 
32.8 
26.8 
63.7 
0 
0 
14.6 
1.1 
17-57 
3.5 

0.6 
0 
1.3 
0.2 
0.3 
0.3 
0 
0.05 
0 
0 
0 
0 
0 
0.04 

 
Combination of these parameters is frequently used for determination of the surface 

free energy of a solid or liquid (γi), 

−++= ii
LW

ii γγγγ 2  Eq. 54 

A negative value of ∆GSLG
AB calculated from Eq. 52 and Eq. 53 indicates attraction 

of a solid particle to a bubble surface due to acid-base type of interactions present 
between liquid molecules (∆GLL

AB) that are stronger than acid-base interactions between 
solid surface and liquid (∆GSL

AB). If also ∆GSLG
AB > ∆GSLG

LW the particle-liquid-gas 
system is thermodynamically unstable, at least at short separations; this instability of the 
system is often referred to a “hydrophobic effect”. Solid particles having hydrophobic 
surfaces such as most of the polymers, coal, graphite, molybdenite, sulfur, stibnite, 
poryphyllite, talc, and probably several other inorganic materials, all demonstrate affinity 
to gas bubbles in water. The “hydrophilic” solid particles (majority of the natural and 
synthetic inorganic solids) on the other hand, need to be modified with organic 
“hydrophobic” collectors to decrease the γS

+ and γS
- values for solid surfaces and thus 

reduce or eliminate attractive Lewis acid-base interactions between solid surface and 
liquid. Strong solid-liquid Lewis acid-base interactions enhance stability of the liquid 
film separating a solid particle from a gas bubble and reduce, or eliminate, chances for 
attachment of the particle to the gas bubble surface. 

Because the interactions between particles and bubbles are usually analyzed using 
experimentally measurable forces instead of energies, we define the Lewis acid-base 
forces (F) interacting between a small particle with a radius R and a much larger gas 
bubble (the case of sphere-flat surface interactions) as follows: 



)exp()(2 0
0 λ

π
lllGRF AB

SLG
−

∆−=  Eq. 55 

Figure 15 shows the magnitude and range of the Lewis acid-base forces, Lifshitz-
van der Waals forces, and electrostatic force operating between a coal particle and a gas 
bubble. The properties of the system and parameters used in calculating colloidal forces 
are specified in the figure caption and they were selected arbitrarily based on the 
literature data presented for coal surfaces by Good et al. [86] and summarized for coal 
flotation systems by Laskowski [87]. 
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Figure 15. Normalized colloidal forces operating between a coal particle and a gas bubble 
surface calculated based on DLVO model and Lewis acid-base interactions. Parameters 
used in calculations are: surface potential of –30 mV for both coal and gas bubble 
surfaces, concentration of 1:1 electrolyte 0.005M, which gives the Debye length equal to 
1/κ= 4.3 nm, Hamaker constant ASLG = -9x10-21 J, correlation length for water λ= 0.6, and 
Lewis acid-base free energy ∆GSLG

AB =-70 mJ/m2, calculated by Eq. 53 using 
experimental data presented in Ref. [86]. 

 
It is shown in Figure 15 that DLVO theory predicts a strong repulsion between coal 

particles and gas bubbles in aqueous solutions of 1:1 electrolytes and therefore 
attachment of coal particles to gas bubble surface should not occur. Repulsive Lifshitz-
van der Waals interactions result from Hamaker constant for coal (5.7x10-20 J; calculated 
based on data presented in Ref. [86]) that is larger than for water (3.7x10-20 J) and gas (~0 
J) [88]. Repulsive electrostatic interactions are caused by negative surface potentials 
typical for coals and gas bubbles dispersed either in water or aqueous solutions of 
electrolytes [87]. The only attraction that takes place between a coal particle and a gas 
bubble comes from “hydrophobicity” of the coal particle and resulting Lewis acid-base 
interactions. This attraction however, is relatively short range and becomes important at 
distances shorter than 4-5 nm. As shown in Figure 15, in order for the coal particle to be 
brought to such a short separation distance and then attach to the gas bubble surface a 
large energy barrier caused by repulsive electrostatic interactions must be overcome. 



Compression of the electrical double layers surrounding the coal particle and gas bubble, 
for example, by increasing the concentration of electrolyte, can reduce this energy 
barrier.  
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Figure 16. Theoretically calculated force (total of Lifshitz-van der Waals, electrostatic, 
and Lewis acid-base forces) profile for a coal particle and a gas bubble in aqueous 
solutions of 1:1 electrolyte of two different concentrations, 0.005M and 0.24 M. 
Parameters used in calculations are the same as specified in caption of Figure 15. 

 
As calculated for the system under consideration and shown in Figure 16, a 

concentration of 0.24 M electrolyte is needed to eliminate the energy barrier and promote 
spontaneous attachment of the coal particle to the gas bubble through attractive 
“hydrophobic” interactions. This result is consistent with the practical studies of coal 
flotation, which have shown that many coals can be floated in high-ionic strength salt 
solutions without any additional reagents [87]. However, as follows, attractive 
hydrophobic forces can be directly measured at separation distances of more than 100 
nm.  

“Hydrophobic” Forces - Measurements 
Hydrophobic attraction forces between macroscopic solid surfaces were 

experimentally determined for the first time in 1982 [89]. Mica surfaces were rendered 
moderately hydrophobic by the adsorption of a monolayer of a cationic surfactant, 
hexadecyltrimethylammonium bromide (or CTAB), from an aqueous solution, giving an 
advancing water contact angle of about 60o [68, 89]. The measured forces are shown in 
Figure 17. 



 

Figure 17. Normalized force F/R between cylindrically curved hydrophobic surfaces with 
radius R as a function of separation distance in 10-3 M NaCl and KBr solutions, giving a 
surface charge density of l electron per 5 nm2 (upper curve) and l electron per 95 nm2 
(lower curve). Dotted curves describe the difference between the experimental data 
(points) and the DLVO theory (solid curves). Agreement is observed with hydrophilic 
(uncoated) mica surfaces (inset) [89]. 

 
The next measurements [90] between hydrophobic surfaces, made by adsorption of 

dihexadecylmethylammonium acetate, showed that the hydrophobic attractive force had a 
longer range (about 15 nm). The hydrophobic attractive force versus separation distance 
was again described by a single exponential, but with a larger decay length of 1.4 nm. 
More hydrophobic surfaces were obtained by depositing a monomolecular layer of 
dioctadecyldimethlammonium (DODA) bromide onto the mica surface using the 
Langmuir-Blodgett (LB) technique [69]. The force measurements showed that the 
hydrophobic attraction extended to 30 nm. 

Other experiments with uncharged Langmuir-Blodgett films of hydrocarbon and 
fluorocarbon surfactants [71] showed some quite startling results. The hydrophobic 
attractive force was measurable out to a separation distance of 90 nm. The advancing 
water contact angle was 113o and 93o for the fluorocarbon and DDOA surfaces, 
respectively. The hydrophobic force was again fitted by a double exponential function. 
The short-range exponential decay length was from 2 to 3 nm for both surfaces. At longer 
distances the hydrophobic attraction decayed exponentially with a decay length of 13 nm 
for hydrocarbon and of 16 nm for fluorocarbon. 



Table 6. Experimentally determined values of hydrophobic force constants K and decay 
lengths λ reported in the literature 

System –K  
mN/m 

λ  
nm 

–  K∗

mN/m 
λ∗  
nm 

Contact 
angle¶ 

Reference 

Mica-Mica in CTAB solution 140  1.0   65 [89] 

Mica-Mica in 2 × 10-5 M DHDAA solution 352  1.4   95 [90] 

DDOA LB layers in water 100 2.5 1.6 15  [71] 

Polymerized LB layers in water 
                 “                   in 1 mM NaBr 
                 “                   in 10 mM NaBr 

1.7 
0.4 
0.25  

62 
63 
42 

   [91] 

DDOA LB layers in water and in 10-2 M KBr  3.6 1.2 6.6 5.5 94 [69] 

Silica-Silica in 1 × 10-5 M CTAB 7   6 6 20 75; 46 [92] 

DDOA LB layers in 10-5 M DAH solution  35 2.5   99; 53 [93] 

Mica-Mica in 5 × 10-6 M DAH  50 1.4   80; 60 [94] 

Mica-Mica in 10-6 M DAH + 5 × 10-7 M octanol 
Mica-Mica in 10-6 M DAH + 5 × 10-6 M octanol 
Mica-Mica in 10-6 M DAH + 1 × 10-7 M 
dodecanol 
Mica-Mica in 5 × 10-6 M DAH + 1 × 10-7 M 
dodecanol 
Mica-Mica in 5 × 10-6 M DAH + 5 × 10-7 M 
dodecanol 
Mica-Mica in 5 × 10-6 M DAH + 5 × 10-6 M 
dodecanol 
Mica-Mica in 10-5 M DAH 

40 
40 
40 
45 
45 
40 
45 

1.2 
1.2 
1.0 
1.2 
1.2 
1.2 
1.3 

0.5 
0.5 
 
1.2 
1.3 
1.0 

6.8 
4.0 
 
6.8 
9.0 
2.0 

84; 72 
84; 65 
64; 65 
88; 80 
90; 86 
88; 78 
85; 65 

[95] 

Silanated glass sphere and silanated silica 
plate with the same hydrophobicity 
(symmetric interactions) 
 
 
Silanated glass sphere (with a contact angle 
of 109o) and silanated silica plate with a 
contact angle given in the 6th column 
(asymmetric interactions) 
 

9.0 
12 
9.0 
83 
20 
9.0 
12 
15 
25 
30 
58 
83 

2.0 
10 
24 
32 
2.0 
9.0 
12 
20 
22 
25 
28 
32 

  81 
92 
100 
109 
0 
75 
83 
92 
97 
100 
105 
109 

[81] 

¶ Advancing and receding contact angle, respectively. DHDAA = dihexadecyldimethylamonium 
acetate. DDOA = dimethyldioctadecylamonium bromide. DAH = dodecylamonium 
hydrochloride. 



These hydrophobic attractive forces were followed by a large number of 
experimental studies using the Surface Force Apparatus of Israelachvili [66] as well as 
the non-interferometric surface force techniques [96, 97], of which the Atomic Force 
Microscope (AFM) colloidal probe technique [98, 99] is the most popular. A summary of 
values for the hydrophobic attraction force constants and decay lengths reported by 
various authors is given in Table 6. 

Since these days a vast amount of data for hydrophobic forces measured between 
solid surfaces has been reported in the literature. All of the surface force measurements 
indicate that there is a hydrophobic attraction force between hydrophobic solid 
macroscopic surfaces, in excess of the DLVO forces. The range is quite variable. Smooth 
hydrophobic surfaces do not show the very long-range attraction. Instead, there is a short-
range attraction that is stronger than the van der Waals interaction [100]. For surfaces 
rendered hydrophobic by a silanation process, very long-range (over 100 nm) attractive 
forces are observed with the presence of submicroscopic bubbles [79].  

To rationalize the available experimental observations, the measured forces can be 
divided into three categories [101]: 

• Short-range, strongly attractive forces between stable surfaces (Type I). 
• Attractive forces with variable strength and range in the presence of 

submicroscopic bubbles (Type II). 
• Very long-range, attractive forces with exponential decay (Type III). 

 

 

Figure 18. Steps in the force curves between a polyethylene sphere and a silanated silica 
plate in water saturated by nitrogen[102] 

 



Forces of type I are measured with stable surfaces having an advancing water 
contact angle greater than 90o and a small hysteresis of contact angle. These hydrophobic 
surfaces include polymerized LB films chemically grafted to plasma-treated mica 
surfaces [100] or silica [103], plasma-polymerized films on mica [104], some bulk 
polymer surfaces [105], thiol-modified gold surfaces [106], fused polystyrene [105], and 
some silylated surfaces [107]. These hydrophobic forces have a range up to 20 nm, and 
are not significantly influenced by electrolytes. 

Forces of type II are typically measured with glass and silica surfaces rendered 
hydrophobic by a silanation process in the gas phase [79, 102, 108-110]. The range of 
these forces is up to a few hundred nanometers. Submicroscopic bubbles at the surfaces 
coalesce during the surface approach, causing steps in the force curves (Figure 18) and 
bridging of the surfaces together. The size of the steps on the force curves depends on the 
gas solubility. However, the measured forces do not depend on the gas solubility 
significantly. The influence of surface roughness and heterogeneity appear to be quite 
significant [102]. 

Forces of type III are measured with many surfaces rendered hydrophobic by 
surfactant adsorption in situ from aqueous [111-114] or cyclohexane solutions [115, 116], 
and LB films on mica [69]. The decay length of these exponentially decaying forces 
varies from about 5 to 50 nm. Added salts can influence forces of type III as ionised 
surfactants electrostatically adsorb to surfaces. The long-range attractive forces measured 
between one hydrophobic and one hydrophilic surface [117] can also be placed in this 
category. 

Measurements of the interaction forces between a bubble and a solid particle are 
only recently possible with the invention of the atomic force microscope [118] and the 
development of microfabricated cantilevers. In the AFM colloidal probe measurements, 
the probe particle is glued to the end of the cantilever and the bubble is attached to a flat 
surface on the AFM piezoelectric transducer, which is used to change the relative 
position between the bubble and the particle. Deflection of the cantilever and distance of 
the sample are measured and converted into the interaction force and the relative bubble-
particle position [119, 120]. 

The first measurements using the AFM colloidal probe technique were reported in 
1994 [121, 122]. The expected attraction between hydrophobic silica particles was 
observed. An attractive force observed between hydrophilic particles and bubbles by 
Ducker et al. [121] was probably due to hydrophobic contamination [119]. The 
metastable films between a bubble and a dehydroxylated silica sphere were found to have 
a weak hydrophobic attraction [119]. In the case of more hydrophobic particles, the 
intervening liquid films drained rapidly and the three-phase contact line was instantly 
formed, leading to the establishment of a strong adhesive force [122]. In all cases, the 
results are semi-quantitative since the bubble surface deforms as the particle approaches. 
Both the bubble deformation and film rupture make the measurement of the hydrophobic 
force between a bubble and a particle difficult. 

Measurement of surface forces shows that the type of surfaces as well as dissolved 
gases accumulated in the form of submicroscopic gas bubbles have a strong influence on 
the hydrophobic attraction between solid surfaces, as well as between a bubble and a 
particle. It is likely that the coalescence between the pre-existing submicroscopic gas 
bubbles at the solid surface and the large bubble causes the film rupture during the 



measurements of force between a bubble and a particle, resulting in the particle-bubble 
attachment and contact. The importance of gas bubbles ‘precipitating’ on solid surfaces 
and enhancing mineral flotation, particularly in vacuum flotation, was well known to 
flotation chemists [123-125]. The key feature of these investigations in bubble formation 
is the significant role played by the solid surface [109, 110, 126]. Dissolved air and 
gasses can exist in water in the form of tiny bubbles, down to nanometer dimensions 
called bubstons (i.e. bubbles stablised by ions) [127]. The formation of larger bubbles 
from the pre-existing sources of the bubstons can therefore occur without the need for a 
nucleation step, which is not energetically favorable. 

In flotation, solid particles are generally in contact with air before they have contact 
with water. Air and gases which are trapped on particle surfaces, especially hydrophobic 
surfaces, are not easy to be displaced by the surrounding liquid water phase and these air-
filled cavities are the pre-existing sites for the ‘bridging’ of gas cavities during the 
particle-bubble interaction. Particle surface geometry and chemistry are important. 
Surface geometric defects can act as sites where the gas can be trapped. Shape of the 
particles (angularity) can stimulate the rupture of the intervening liquid film during the 
bubble-particle attachment and enhance flotation [128]. Flotation collectors adsorb onto 
the particle-liquid surface in an uneven fashion. The patchy distribution of these 
collectors on solid surfaces has been identified [109] and these heterogeneities of the 
hydrophobic surface can act as sites to trap gas cavities and promote strong attraction 
between surfaces due to the coalescence and bridging of microscopic gas bubbles. 

It is evident that the nature of hydrophobic forces is interconnected with 
phenomena involving structure of the gas-liquid interfaces, bubble nucleation, submicron 
bubbles at the surface and how these phenomena influence the stability of water film 
between bubble and solid hydrophobic surface. 

 
4. Structure and Stability of Water Films at Hydrophobic Surfaces 

Structure of water near surfaces 
The presence of a solid surface significantly perturbs the structure of the water 

adjacent to the surface. Likewise, the water is also perturbed at the gas-liquid interface. 
The interactions between water molecules and solutes (ionic and nonionic species) 

having different physicochemical properties prompted a number of investigations into the 
molecular structure of water and the effects that various solutes (charged and uncharged) 
may have upon this structure [129]. Like other liquids close to their melting point, water 
may be considered a disordered solid rather than a dense vapor, with a tetrahedral 
structure, orderliness, which extends over a distance smaller than about three molecular 
diameters because of the thermal movements of the strongly polar water molecules. 

Thermodynamic and spectroscopic studies [129] have shown that a thermodynamic 
equilibrium can exist between the bulk water structure  and the “dense” solid-like water 
structure.  

 



 
Figure 19. Water structure at hydrophilic and hydrophobic surfaces. Bulk water is shown 
by pentagonal and partial pentagonal structures, which are in equilibrium with 
monomeric water represented by arrows. Dipole-dipole interaction at a hydrophilic 
surface causes ordering of water molecules, leading to a notable disordered zone. Water 
molecules at a hydrophobic surface have extensive clathrate-like structure with a minimal 
disordered zone [130]. 

 
The equilibrium can be considerably affected by the presence of solid surfaces and 

the presence of structure-making or structure-breaking compounds. Repulsive hydration 
forces arise whenever molecules are strongly hydrated or water is strongly bound to 
hydrophilic surfaces, such as hydrated ions or hydroxyl (-OH) groups, which modify the 
H-bonding network of liquid water adjacent to them (Figure 19).  

The introduction of an apolar molecule or hydrophobic surface into water leads to a 
reduction in the degrees of freedom – spatial, orientational, dynamic – of the neighboring 
water molecules. These water molecules become more solid-like (quasi-crystallized). The 
normal bulk structure of the water molecules is locally absent and an "iceberg" with 
clathrate-like structure is formed around the apolar residues. 

Various techniques have been used to study the ordering of water molecules near 
hydrophobic interfaces, including the air/water interface. Sum - frequency generation 
(SFG) [131, 132], Raman [133] and FTIR [134] spectroscopies along with extended X-
ray absorption fine structure (EXAFS) [135], neutron reflectivity [136] and X-ray 
reflectivity [137] have been used. SFG studies of water at air/water, CCl4/water and 
octadecyltrichlorosilane/water interfaces [131, 132] indeed indicated the presence of a 
broken hydrogen bonds (free OH stretch) near a hydrophobic interface. However, other 
SFG studies indicated that the hydrogen bonding between adjacent water molecules close 
to the hydrophobic interface is weak, in contrast to generally accepted models [138]. 
Nevertheless, interaction between these water molecules and hydrophobic surfaces results 
in significant orientation of these weakly hydrogen - bonded molecules in the interfacial 
region. EXAFS [135], neutron reflectivity [136] and X-ray reflectivity [137] studies all 
indicate an expanded more ordered network of water molecules near hydrophobic 
surfaces. Molecular dynamic studies also confirmed the results of SFG studies [139].   

It is apparent that phenomena occurring at the water-hydrophobic interface are 
responsible for the observed short - and long - range attractions.  It was recently proposed 



that the film might become unstable to thermal and mechanical (hydrodynamic) 
fluctuations and that fluctuating gaps are generated between two hydrophobic interfaces 
[74]. If fluctuations are large enough, bridging gas cavities can form between such 
hydrophobic surfaces. 

While intermolecular water structure seems to be important for short range 
hydrophobic forces, the long-range hydrophobic force seems to be related to the 
stabilization of nanosized gas bubbles at hydrophobic surfaces. Cavitation was indeed 
experimentally observed in surface force apparatus measurements when two hydrophobic 
surfaces were separated from contact in water [71]. Optical laser pulse cavitation 
experiments in thin films bounded by hydrophilic and hydrophobic surfaces indicated 
significantly higher probability of cavitation near hydrophobic surfaces [127]. Outgassing 
significantly decreased the probability of cavitation near hydrophobic surfaces but had 
only a mild influence on cavitation near hydrophilic surfaces. Other indirect evidence for 
the existence of submicroscopic bubbles at hydrophobic surfaces exists. Miller and 
coworkers [134] used attenuated total reflectance ATR/FTIR spectroscopy measurements 
to indicate the presence of gas species at a hydrophobic surface. No accumulation of 
hydrophobic butane gas at hydrophilic silica surfaces was observed. However, on 
hydrophobic silicon surfaces, butane was accumulated. Analysis of their spectra suggests 
that butane was adsorbed in the form of aggregates rather than single molecules. 

Direct visualization of nanobbubles at hydrophobic surfaces has recently been 
achieved. Tyrell and Attard [110, 140] have observed nanobbubles with the tapping mode 
atomic force microscopy on hydrophobized glass surfaces. Complementary force curves 
between a silica colloidal probe and a glass surface display features characteristic of the 
hydrophobic interaction, including a jump - in distance that is comparable to the height of 
the imaged bubbles. Nanobubbles are not present in ethanol but regrow following the 
subsequent reintroduction of water. Bubbles with a radius of 100 nm and of irregular 
shape were observed. Other researchers involved in the research of gas/liquid interfaces 
recently reported direct observation of very small bubbles on hydrophobic surfaces [126]. 

Other experimental techniques have recently been used to prove the existence of 
nanobubbles and their precursor layer at the hydrophobic solid surface [137]. Neutron 
reflectivity experiments on the interface of pure D2O against thin films of predeuterated 
polystyrene (d-PS) spin - coated onto silicon blocks were performed to study the intrinsic 
structure of interfacial water at a hydrophobic surface. The experiments revealed the 
existence of nonvanishing scattering contrast at the water/polymer interface.  It was 
concluded that this represents a precursor layer of submicroscopic bubbles observed in 
the AFM experiments, which were also performed with the same system.  The thickness 
of this gas precursor layer was 2-5 nm, depending on the level of air saturation of the 
water sample and on the time elapsed after contacting it with the hydrophobic surface. 
Neutron reflectivity studies showed that in the presence of gas the thickness of the gas 
layer near the flat surface is anywhere between 2 and 5 nm [137], depending on the gas 
supersaturation level. X-ray reflectivity studies with pure outgassed water showed that 
thickness of the dewetted region extends less than 1.5 nm from the hydrophobic surface 
[136]. Such a precursor layer might also have a crucial role in bubble nucleation or 
attachment to hydrophobic surfaces.  

Based on these observations and theoretical analysis [141], it has been proposed 
that the long - range attraction between hydrophobic solids is due to bridging of pre-



existing nanobbubles on hydrophobic surfaces, or bubble nucleation (cavitation) as 
surfaces approach each other [79], as it is shown on Figure 20. Direct force 
measurements by numerous researchers [100, 142-145] showed the existence of long-
range hydrophobic forces and the diminished attraction in deaerated water.  

 

Figure 20. Schematic picture of cavitation phenomena during approach of hydrophobic 
sphere and hydrophobic plane in water. a) layers of lower medium density (adsorbed gas 
molecules), b) nanobubbles formation, c) bridging cavity formation, d) multiple bridging 
cavities, leading to film rupture and attachment 

 

a b c d

The existence of similar features at the gas-liquid interface is still in debate. It was 
recently proposed that the stability of macroscopic bubbles in various electrolytes can be 
explained with the formation of a surface layer of nanobubbles [146]. The relationship 
between dissolved electrolytes, bubble coalescence, surface tension, gas solubility, and 
ion hydration was also studied [147-149]. Ninham and coworkers observed a peculiar 
phenomenon that while some electrolytes stabilized macroscopic bubbles, other did not 
influence bubble coalescence at all. Moreover, a combination of some cations and anions 
would always produce stabilization, while a combination of other ions would destabilize 
bubbles. After careful analysis of the problem, it was proposed that macroscopic bubbles 
are surrounded with the gradients of submicron bubbles and that such gradients play an 
important role in the coalescence of macroscopic bubbles. Electrolytes, which are 
successful in decreasing gas solubility, decrease the concentration and gradient of 
submicron bubbles and therefore stabilize macroscopic bubbles. On the other hand, the 
electrolytes that did not influence solubility of a particular gas did not influence the 
stability of macroscopic bubbles to an appreciable extent. As in the case of surface 
nanobubbles, supersaturation and slow gas/liquid system equilibration again seem to be 
responsible for the observed behavior, at least in part. 

 

Rupture of Water Film at a Hydrophobic Surface 
Macroscopic liquid films on flat solid surfaces are unconditionally stable if the 

thickness of the liquid film is larger than hcr [150]: 
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hcr =  Eq. 56 



where γ is the liquid surface tension, ρ is the liquid density, g is the gravitational 
constant, and θ is the equilibrium contact angle. 

For liquid films that are a few hundred micrometers or less, the gravity is negligible 
and stability of such films is governed by a competition between interfacial tensions of 
the solid-liquid-gas system [151]. Sharma and Ruckenstein analyzed the change in free 
energy of the three-phase system associated with rupture of a uniform liquid film 
separating a solid surface from a gas phase [151]. They found that the maximum film 
thickness (hmax) at rupture depends on the diameter of the hole (hole is referred to a solid 
area exposed to a gas phase after film rupture) that is formed (d) and wetting 
characteristics of the solid surface defined by equilibrium contact angle (θ) [151]: 
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  Eq. 57 

It can be concluded from this model that liquid films are less stable when they are 
spread over macroscopic and microscopic solid surfaces rather than sub-microscopic 
solid surfaces because only small diameter holes, if energetically favorable, can be 
formed on sub-microscopic surfaces due to geometrical factor that needs to be taken into 
account. The same might be true for macroscopic surfaces if the nucleation of holes is 
governed by roughness and/or heterogeneity characteristics of the solid surface. Also due 
to equation 57, thinner liquid films remain stable on solid surfaces that possess stronger 
interactions with wetting liquid. 

For a particle interacting with a bubble, the maximum solid-gas area that can be 
formed after liquid film rupture is usually restricted by the size, shape, topography, and 
heterogeneity of the particle. In the case of particles that are a few hundreds of 
micrometers in diameter or smaller, the diameter of the nucleated hole formed on such 
particles can be several micrometers at most due to restrictions posed by particle 
geometry. Recent AFM studies indicate that the diameter of the small bubbles nucleated 
on hydrophobic (heterogeneous) surfaces immersed in water is less than 0.1 µm [126]. 
These small bubbles not only activate destabilization of the liquid film but probably also 
represent the size of hydrophobic patches that are responsible for creation of the holes of 
similar lateral dimensions. Sheludko et al. [6] derived an equation on the critical radius 
(rc) of the three-phase contact line below which the linear free energy is too large for the 
three-phase contact line to be stable: 
 

)cos1( θγ
σ

−
=cr  Eq. 58 

where σ is the line tension, γ is surface tension, and θ is contact angle. 
Assuming that rc is equivalent to the minimum size of the nuclei and holes that can 

be formed in a liquid film and taking the line tension value as 10-10 J/m2 [152], equation 
58 predicts that the minimum diameter of the three-phase contact area after liquid film 
rupture is about 30-300 nm, depending on the liquid surface tension and solid wetting 
characteristics. 



Table 7 shows the theoretical values of the maximum thickness of the liquid film at 
rupture as predicted by the theoretical model proposed by Sharma and Ruckenstein [151]. 
The hmax values were calculated using equation 57 and assuming that the diameter of the 
hole is as small as 10 µm, 1 µm or 0.1 µm. The calculations were done for three different 
equilibrium contact angles of 30, 60, and 90 degrees. As shown in Table 7, if the size of 
the solid-gas area formed after film rupture is reduced to 10 µm or less, the thickness of 
the stable liquid film is reduced to a few micrometers. For instance, the maximum 
thickness of the stable film is reduced to 10-30 nm if the maximum diameter of the 
formed solid-gas contact area is 100 nm. At such short separations (<30 nm) of one 
interface (solid-liquid) from another interface (liquid-gas), colloidal forces often operate, 
as described in previous sections, and the stability of the liquid film is affected (surface 
tension of the liquid-gas interface might be affected as well). For example, long-range 
repulsive electrostatic forces enhance the stability of thin water films. These repulsive 
colloidal forces, if present, provide additional energetic barrier for the liquid film to 
rupture and slow down, or even eliminate, the attachment of particles to a gas bubble 
surface. A detailed analysis of the surface forces effect on the critical film thickness is 
however, beyond the scope of this paper. 
 

Table 7. Prediction of the liquid film thickness at rupture according to equation 57 

Critical Diameter of 
Rupture Hole (d) 

[µm] 

Contact angle (θ) 
[deg] 

Maximum Film Thickness 
(hmax) 
[µm] 

10 30 
60 
90 

1.28 
2.40 
3.19 

1 30 
60 
90 

0.13 
0.24 
0.32 

0.1 30 
60 
90 

0.01 
0.02 
0.03 

 
5. Formation and Relaxation of Three Phase Contact Line 

The formation of a three phase contact line during rupture of a liquid film is very 
rapid process but must be initiated by favorable energetic conditions. As discussed in the 
previous section, the liquid film ruptures due to energetic imbalance in interfacial 
tensions of the three-phase system. Because of the small dimensions of the holes 
nucleated during film rupture, the tension at the three phase contact line can be as 
important, or even dominating, factor as tensions at surfaces. The formation of the three 
phase contact line cannot begin from a zero or near zero dimension because of the large 
work of formation associated with this process [153]. The minimum dimension of the 
three phase contact line that can be formed has been formulated by Scheludko et al. [6] 
and presented in the previous section (see equation 58). 

 
 



 
Figure 21. Selected frames for an air bubble (~1.5 mm in diameter) attachment at a 
chalcopyrite surface in deionized water as captured with a Kodak EktaPro 1000 High-
Speed Video System (J. Drelich and J.D. Miller – unpublished) 

 
The dynamics of expansion of the three phase contact line after its formation has 

been extensively studied for high-viscosity polymeric films [154]. Similar studies that 
involve low-viscosity liquids, important to particle-liquid-bubble systems, are very much 
in their infancy, mainly due to experimental difficulties to obtain a precise recording of 
this rapid relaxation process. As an example, Figure 21 shows the event of air bubble 
attachment to a chalcopyrite surface in deionized water. The sequence of three high-
speed video frames in the upper row represents the time of bubble shape stabilization and 
water film thinning. The lower row of high-speed video frames shows the formation of 
the three phase contact line and its expansion; from the moment the water film breaks to 
the final “equilibrium state” when the three phase contact line remains stable. It can be 
seen that the relaxation of the three phase contact line for the example shown in Figure 21 
is completed in about 40 ms. 

Hydrodynamic and molecular-kinetic models are the two principal approaches used 
to describe the dynamics of a liquid spreading (or retreating) over (from) a solid or liquid 
surface [155]. These models differ by the mode of energy dissipation. Viscous drag 
within the spreading liquid is responsible for the energy dissipation in the hydrodynamic 
model. In the molecular-kinetic model, dissipation is the result of friction at the three-
phase contact line. Both theories describe the experimental results fairly well for viscous 
liquids at low and moderate velocities. Due to a lack of experimental data, suitability of 
theoretical models to explain high velocity relaxation conditions and low viscosity liquids 
remains unexplored. 



The driving force for the three phase contact line expansion over a solid surface 
comes from the difference between the dynamic (θd) and equilibrium (θo) contact angles. 
The velocity of the three phase contact line enlargement (dr/dt), for a circular-shape 
solid-gas area of contact characterized by a radius r, depends on the difference between 
the cosine of the dynamic contact angle and the cosine of the equilibrium contact angle 
[156]: 

)cos(cos~ dodt
dr

θθγ −  Eq. 59 

Because the difference between θd and θo contact angles diminishes with relaxation 
time, with the dynamic contact angle increasing from zero (or a near zero) value to a 
static receding contact angle, the velocity of the three phase contact line expansion 
decreases with progression of the spreading phenomenon. It should be verified 
experimentally if θo in the above equation should refer to the equilibrium contact angle, 
as usually assumed in the literature, or to the static receding contact angle. 

 
6. Summary and Conclusions 

Substantial progress has been made in our understanding of the interaction of 
bubbles with solid surfaces. This progress includes analysis of surface hydrodynamic 
forces, the theoretical examination and measurement of surface forces, and the 
characterization of interfacial water/solid surface states. 

In the case of bubble approach/contact, hydrodynamic force analysis has been 
successful in description of geometry of the approaching interfaces and their deformation. 
Film thinning during collision and sliding is well described by approximate solutions for 
hydrodynamic functions for both no-slip and slip gas-liquid interface. 

Even greater advances have been made in the case of surface forces governing film 
thinning, rupture, and attachment. For example, the significance of the hydrophobic 
attractive force is well documented. Although not completely understood from a 
quantitative perspective, it is clear that manifestation of this force is related to the 
discontinuities in the water film between hydrophobic interfaces. The effect of different 
variables, including dissolved gas and roughness of the solid surface on this force is well 
observed. 

Finally this progress has been made, in part, due to the ability to more accurately 
characterize the structures of interfacial water and solid surface states, both spatially with 
AFM resolution at the nanometer level and spectroscopically with surface sensitivity to 
describe the vibrational features of interfacial molecules. For example formation of 
nanobubbles at the solid hydrophobic surfaces has been observed. Spectroscopic studies 
have shown differences between bulk water structure and the water molecules 
arrangement at the interfaces. 
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